Skip to main content

Advertisement

Log in

Glutaric Acid Affects Pericyte Contractility and Migration: Possible Implications for GA-I Pathogenesis

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Glutaric acidemia I (GA-I) is an inherited neurometabolic childhood disease characterized by bilateral striatal neurodegeneration upon brain accumulation of millimolar concentrations of glutaric acid (GA) and related metabolites. Vascular dysfunction, including abnormal cerebral blood flow and blood-brain barrier damage, is an early pathological feature in GA-I, although the affected cellular targets and underlying mechanisms remain unknown. In the present study, we have assessed the effects of GA on capillary pericyte contractility in cerebral cortical slices and pericyte cultures, as well as on the survival, proliferation, and migration of cultured pericytes. GA induced a significant reduction in capillary diameter at distances up to ~ 10 μm from the center of pericyte somata. However, GA did not affect the contractility of cultured pericytes, suggesting that the response elicited in slices may involve GA evoking pericyte contraction by acting on other cellular components of the neurovascular unit. Moreover, GA indirectly inhibited migration of cultured pericytes, an effect that was dependent on soluble glial factors since it was observed upon application of conditioned media from GA-treated astrocytes (CM-GA), but not upon direct GA addition to the medium. Remarkably, CM-GA showed increased expression of cytokines and growth factors that might mediate the effects of increased GA levels not only on pericyte migration but also on vascular permeability and angiogenesis. These data suggest that some effects elicited by GA might be produced by altering astrocyte-pericyte communication, rather than directly acting on pericytes. Importantly, GA-evoked alteration of capillary pericyte contractility may account for the reduced cerebral blood flow observed in GA-I patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BBB:

Blood-brain barrier

GA-I:

glutaric academia type I

GA:

glutaric acid

3-OHGA:

3-hydroxyglutaric acid

GCDH:

glutaryl-CoA dehydrogenase

PDGFRβ :

receptor β of the platelet derived growth factor

NG2:

neural/glial antigen 2

αSMA:

alpha smooth muscle actin

CM:

astrocyte conditioned media

CM-GA:

GA-treated astrocyte conditioned media

CM-C:

control astrocyte conditioned media

aCSF:

artificial cerebrospinal fluid

PI:

propidium iodide

References

  1. Hoffmann GF, Athanassopoulos S, Burlina AB, Duran M, de Klerk JB, Lehnert W, Leonard JV, Monavari AA et al (1996) Clinical course, early diagnosis, treatment, and prevention of disease in glutaryl-CoA dehydrogenase deficiency. Neuropediatrics 27:115–123. https://doi.org/10.1055/s-2007-973761

    Article  CAS  PubMed  Google Scholar 

  2. Funk CB, Prasad AN, Frosk P, Sauer S, Kolker S, Greenberg CR, Del Bigio MR (2005) Neuropathological, biochemical and molecular findings in a glutaric acidemia type 1 cohort. Brain 128:711–722. https://doi.org/10.1093/brain/awh401

    Article  PubMed  Google Scholar 

  3. Boy N, Mühlhausen C, Maier EM, Heringer J, Assmann B et al (2017) Proposed recommendations for diagnosing and managing individuals with glutaric aciduria type I: Second revision. J Inherit Metab Dis 40(1):75–101. https://doi.org/10.1007/s10545-016-9999-9

    Article  PubMed  Google Scholar 

  4. Goodman SI, Markey SP, Moe PG, Miles BS, Teng CC (1975) Glutaric aciduria; a "new" disorder of amino acid metabolism. Biochem Med 12(1):12–21. https://doi.org/10.1016/0006-2944(75)90091-5

    Article  CAS  PubMed  Google Scholar 

  5. Knapp JF, Soden SE, Dasouki MJ, Walsh IR (2002) A 9-month-old baby with subdural hematomas, retinal hemorrhages, and developmental delay. Pediatr Emerg Care 18(1):44–47. https://doi.org/10.1097/00006565-200202000-00014

    Article  PubMed  Google Scholar 

  6. Strauss KA, Lazovic J, Wintermark M, Morton DH (2007) Multimodal imaging of striatal degeneration in Amish patients with glutaryl-CoA dehydrogenase deficiency. Brain 130:1905–1920. https://doi.org/10.1093/brain/awm058

    Article  PubMed  Google Scholar 

  7. Strauss KA, Donnelly P, Wintermark M (2010) Cerebral haemodynamics in patients with glutaryl-coenzyme a dehydrogenase deficiency. Brain 133:76–92. https://doi.org/10.1093/brain/awp297

    Article  PubMed  Google Scholar 

  8. Harting I, Neumaier-Probst E, Seitz A, Maier EM, Assmann B, Baric I, Troncoso M, Mühlhausen C et al (2009) Dynamic changes of striatal and extrastriatal abnormalities in glutaric aciduria type I. Brain 132:1764–1782. https://doi.org/10.1093/brain/awp112

    Article  PubMed  Google Scholar 

  9. Strauss KA, Morton DH (2003) Type I glutaric aciduria, part 2: a model of acute striatal necrosis. Am J Med Genet C: Semin Med Genet 121C:53–70. https://doi.org/10.1002/ajmg.c.20008

    Article  Google Scholar 

  10. Zinnanti WJ, Lazovic J, Wolpert EB, Antonetti DA, Smith MB, Connor JR, Woontner M, Goodman SI et al (2006) A diet-induced mouse model for glutaric aciduria type I. Brain 129(Pt 4:899–910. https://doi.org/10.1093/brain/awl009

    Article  PubMed  Google Scholar 

  11. Mühlhausen C, Ergün S, Strauss KA, Koeller DM, Crnic L, Woontner M, Goodman SI, Ullrich K et al (2004) Vascular dysfunction as an additional pathomechanism in glutaric aciduria type I. J Inherit Metab Dis 27(6):829–834. https://doi.org/10.1023/B:BOLI.0000045766.98718.d6

    Article  PubMed  Google Scholar 

  12. Mühlhausen C, Ott N, Chalajour F, Tilki D, Freudenberg F, Shahhossini M, Thiem J, Ullrich K et al (2006) Endothelial effects of 3- hydroxyglutaric acid: Implications for glutaric aciduria type I. Pediatr Res 59(2):196–202. https://doi.org/10.1203/01.pdr.0000197313.44265.cb

    Article  PubMed  Google Scholar 

  13. Isasi E, Barbeito L, Olivera-Bravo S (2014) Increased blood–brain barrier permeability and alterations in perivascular astrocytes and pericytes induced by intracisternal glutaric acid. Fluids Barriers CNS 11:15. https://doi.org/10.1186/2045-8118-11-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Olivera-Bravo S, Ribeiro CA, Isasi E, Trías E, Leipnitz G et al (2015) Striatal neuronal death mediated by astrocytes from the Gcdh−/− mouse model of glutaric acidemia type I. Hum Mol Genet 24(16):4504–4515. https://doi.org/10.1093/hmg/ddv175

    Article  CAS  PubMed  Google Scholar 

  15. Olivera-Bravo S, Isasi E, Fernández A, Casanova G, Rosillo JC, Barbeito L (2016) Astrocyte dysfunction in developmental neurometabolic diseases. Adv Exp Med Biol 949:227–243. https://doi.org/10.1007/978-3-319-40764-7_11

    Article  CAS  PubMed  Google Scholar 

  16. Strauss KA, Brumbaugh J, Duffy A, Wardley B, Robinson D, Hendrickson C, Tortorelli S, Moser AB et al (2011) Safety, efficacy and physiological actions of a lysine-free, arginine-rich formula to treat glutaryl-CoA dehydrogenase deficiency: Focus on cerebral amino acid influx. Mol Genet Metab 104(1–2):93–106. https://doi.org/10.1016/j.ymgme.2011.07.003

    Article  CAS  PubMed  Google Scholar 

  17. Mishra A, O'Farrell FM, Reynell C, Hamilton NB, Hall CN, Attwell D (2014) Imaging pericytes and capillary diameter in brain slices and isolated retinae. Nat Protoc 9(2):323–336. https://doi.org/10.1038/nprot.2014.019

    Article  CAS  PubMed  Google Scholar 

  18. Mishra A, Reynolds JP, Chen Y, Gourine AV, Rusakov DA, Attwell D (2016) Astrocytes mediate neurovascular signaling to capillary pericytes but not to arterioles. Nat Neurosci 19(12):1619–1627. https://doi.org/10.1038/nn.4428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hall CN, Reynell C, Gesslein B, Hamilton NB, Mishra A, Sutherland BA, O’Farrell FM, Buchan AM et al (2014) Capillary pericytes regulate cerebral blood flow in health and disease. Nature 508(7494):55–60. https://doi.org/10.1038/nature13165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cassina P, Peluffo H, Pehar M, Martinez-Palma L, Ressia A, Beckman JS, Estévez AG, Barbeito L (2002) Peroxynitrite triggers a phenotypic transformation in spinal cord astrocytes that induces motor neuron apoptosis. J Neurosci Res 67(1):21–29. https://doi.org/10.1002/jnr.10107

    Article  PubMed  Google Scholar 

  21. Tigges U, Welser-Alves JV, Boroujerdi A, Milner R (2012) A novel and simple method for culturing pericytes from mouse brain. Microvasc Res 84(1):74–80. https://doi.org/10.1016/j.mvr.2012.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Das A, Frank RN, Weber ML, Kennedy A, Reidy CA, Mancini MA (1998) ATP causes retinal pericytes to contract in vitro. Exp Eye Res 46(3):349–362. https://doi.org/10.1016/S0014-4835(88)80025-3

    Article  Google Scholar 

  23. Kawamura H, Sugiyama T, Wu DM, Kobayashi M, Yamanishi S, Katsumura K, Puro DG (2003) ATP: A vasoactive signal in the pericyte-containing microvasculature of the rat retina. J Physiol 551(3):787–799. https://doi.org/10.1113/jphysiol.2003.047977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Attwell D, Mishra A, Hall CN, O'Farrell FM, Dalkara T (2016) What is a pericyte? J Cereb Blood Flow Metab 36(2):451–455. https://doi.org/10.1177/0271678X15610340

    Article  CAS  PubMed  Google Scholar 

  25. Giaume C, Orellana JA, Abudara V, Sáez JC (2012) Connexin-based channels in astrocytes: How to study their properties. Methods Mol Biol 814:283–303. https://doi.org/10.1007/978-1-61779-452-0_19

    Article  CAS  PubMed  Google Scholar 

  26. Armada A, Martins C, Spengler G, Molnar J, Amaral L et al (2016) Fluorimetric methods for analysis of permeability, drug transport kinetics, and inhibition of the ABCB1 membrane transporter. Methods Mol Biol 1395:87–103. https://doi.org/10.1007/978-1-4939-3347-1_7

    Article  CAS  PubMed  Google Scholar 

  27. Olivera-Bravo S, Fernández A, Sarlabós MN, Rosillo JC, Casanova G, Jiménez M, Barbeito L (2011) Neonatal astrocyte damage is sufficient to trigger progressive striatal degeneration in a rat model of glutaric acidemia-I. PlosOne 6:e20831–e20840. https://doi.org/10.1371/journal.pone.0020831

    Article  CAS  Google Scholar 

  28. Cory G (2011) Scratch-wound assay. Methods Mol Biol 769:25–30. https://doi.org/10.1007/978-1-61779-207-6_2

    Article  CAS  PubMed  Google Scholar 

  29. Aguilera KY, Brekken RA (2014) Recruitment and retention: Factors that affect pericyte migration. Cell Mol Life Sci 71(2):299–309. https://doi.org/10.1007/s00018-013-1432-z

    Article  CAS  PubMed  Google Scholar 

  30. Almutairi MM, Gong C, Xu YG, Chang Y, Shi H (2016) Factors controlling permeability of the blood-brain barrier. Cell Mol Life Sci 73(1):57–77. https://doi.org/10.1007/s00018-015-2050-8

    Article  CAS  PubMed  Google Scholar 

  31. Gould IG, Tsai P, Kleinfeld D, Linninger A (2017) The capillary bed offers the largest hemodynamic resistance to the cortical blood supply. J Cereb Blood Flow Metab 37(1):52–68. https://doi.org/10.1177/0271678X16671146

    Article  CAS  PubMed  Google Scholar 

  32. Külkens S, Harting I, Sauer S, Zschocke J, Hoffmann GF et al (2005) Late-onset neurologic disease glutaryl-CoA dehydrogenase deficiency. Neurol. 64:142–2144. https://doi.org/10.1212/01.WNL.0000167428.12417.B2

    Article  Google Scholar 

  33. Peppiatt CM, Howarth C, Mobbs P, Attwell D (2006) Bidirectional control of CNS capillary diameter by pericytes. Nature 443(7112):700–704. https://doi.org/10.1038/nature05193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hamilton NB, Attwell D, Hall CN (2010) Pericyte-mediated regulation of capillary diameter: A component of neurovascular coupling in health and disease. Front Neuroenerg 2:5. https://doi.org/10.3389/fnene.2010.00005

    Article  Google Scholar 

  35. Olivera S, Fernandez A, Latini A, Rosillo JC, Casanova G, Wajner M, Cassina P, Barbeito L (2008) Astrocytic proliferation and mitochondrial dysfunction induced by accumulated glutaric acidemia I (GAI) metabolites: Possible implications for GAI pathogenesis. Neurobiol Dis 32:528–534. https://doi.org/10.1016/j.nbd.2008.09.011

    Article  CAS  PubMed  Google Scholar 

  36. Lindahl P, Johansson BR, Levéen P, Betsholtz C (1997) Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277(5323):242–245. https://doi.org/10.1126/science.277.5323.242

    Article  CAS  PubMed  Google Scholar 

  37. Armulik A, Abramsson A, Betsholtz C (2005) Endothelial/pericyte interactions. Circ Res 97(6):512–523. https://doi.org/10.1161/01.RES.0000182903.16652.d7

    Article  CAS  PubMed  Google Scholar 

  38. Armulik A, Genové G, Betsholtz C (2011) Pericytes: Developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 21(2):193–215. https://doi.org/10.1016/j.devcel.2011.07.001

    Article  CAS  PubMed  Google Scholar 

  39. Mahfoud A, Domínguez CL, Rizzo C, Ribes (2004) In utero macrocephaly as clinical manifestation of glutaric aciduria type I. Report of a novel mutation. Annu Rev Neurol 39(10):939–942. https://doi.org/10.1055/s-0029-1239525

    Article  CAS  Google Scholar 

  40. Davis GE, Senger DR (2008) Extracellular matrix mediates a molecular balance between vascular morphogenesis and regression. Curr Opin Hematol 15(3):197–203. https://doi.org/10.1097/MOH.0b013e3282fcc321

    Article  CAS  PubMed  Google Scholar 

  41. Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, Jeltsch M, Mitchell C et al (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161(6):1163–1177. https://doi.org/10.1083/jcb.200302047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Argaw AT, Asp L, Zhang J, Navrazhina K, Pham T, Mariani JN, Mahase S, Dutta DJ et al (2012) Astrocyte-derived VEGF-A drives blood-brain barrier disruption in CNS inflammatory disease. J Clin Invest 122(7):2454–2468. https://doi.org/10.1172/JCI60842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chapouly C, Tadesse Argaw A, Horng S, Castro K, Zhang J, Asp L, Loo H, Laitman BM et al (2015) Astrocytic TYMP and VEGFA drive blood-brain barrier opening in inflammatory central nervous system lesions. Brain 138(Pt 6:1548–1567. https://doi.org/10.1093/brain/awv077

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by the Program for the Development of Basic Sciences (PEDECIBA) a joint program of the University of the Republic (UDELAR) and the Ministry of Education and Culture (MEC). E.I. received a Doctoral Fellowship from the National Agency for Innovation and Research (ANII) and grants to attend to Prof. Attwell’s lab from PEDECIBA and the Sectorial Comission for Scientific Research (CSIC, UDELAR). E.I.’s experiments in the Attwell lab were funded by a European Research Council grant to D.A. N.K. was supported by a BBSRC (UK) LIDo PhD studentship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Olivera-Bravo.

Ethics declarations

Ethical Statement

This study was performed in accordance with the Principles of Laboratory Animal Care, National Institute of Health of United States of America, NIH, publication no. 85-23 (2011 revision), and approved by the IIBCE Ethical Committee for the Care and Use of Laboratory Animals and from the National Committee for Laboratory Animal Care (CNEA) from Uruguay. All efforts were made to minimize suffering, discomfort and stress to the animals. The number of animals employed in this work was the necessary to produce reliable scientific data.

Conflict of Interest

The authors declare that they have no conflict of interest

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isasi, E., Korte, N., Abudara, V. et al. Glutaric Acid Affects Pericyte Contractility and Migration: Possible Implications for GA-I Pathogenesis. Mol Neurobiol 56, 7694–7707 (2019). https://doi.org/10.1007/s12035-019-1620-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-019-1620-4

Keywords

Navigation